Заземление и зануление: разбираемся в чем разница

В чём разница между заземлением и занулением?

Заземление и зануление: разбираемся в чем разница

Некоторые аспекты электробезопасности не вполне понятны обывателю, а ведь именно это отличает его от профессионала, имеющего допуск к монтажу электрических сетей. Сегодня поговорим о важнейших составляющих любой системы электрификации — заземлении и занулении. А также узнаем в чём разница между заземлением и занулением?

Роль зануления в трёхфазной сети

Любая электрическая система построена на трёхфазной сети переменного тока или является её частью. Не углубляясь в теорию слишком сильно, напомним базовые определения работы любой трёхфазной системы.

Между любыми двумя взятыми фазами 50 раз в секунду возникает напряжение 380 В. Конкретно в этот момент времени один из проводников превращается в землю — источник свободных электронов, а другой проводник эти электроны принимает.

Такое же явления возникает и в двух других парах фаз. Разница во времени между тем, как фазы «переключаются», составляет примерно треть от периода колебания в одной из них. Такая схема работы обязана своим появлением наиболее популярному типу электрических машин.

Если расположить фазы по окружности в нужном порядке, то возникновение тока в них так же следовало бы по кругу и было бы способно толкать круглый сердечник двигателя. В самом простом варианте электрических соединений все три фазы должны быть соединены в одной точке.

При этом в конкретный момент времени в пике мощности будут находиться только две из них.

   Разница между заземлением и занулением

Основная проблема в том, что сопротивление рабочих элементов (обмоток двигателя или нагревательных спиралей), включённых в каждую из фаз, не могут быть абсолютно равными.

Поэтому ток в каждой из трёх цепей всегда будет разным, и это явление нужно каким-то образом компенсировать.

Так точку схождения всех трёх фаз присоединяют к земле, чтобы уводить в неё остаточный электрический потенциал.

Как работает заземляющий контур

Любой подъезд многоэтажного дома можно смоделировать по той же схеме. Но квартиры, распределенные по трём имеющимся фазам, потребляют электричество как попало, при чём это потребление постоянно меняется.

Конечно, в среднем в точке подключения домового кабеля в распределительном пункте (РП) разница в токах на фазах составляет не более 5% от номинальной нагрузки.

Однако в редких случаях это отклонение может быть выше 20%, и такое явление сулит серьёзные проблемы.

Давайте на мгновение представить, что электрический стояк, а точнее, его рамная часть, на которую прикручены все нулевые провода, оказался изолированным от земли. Столь высокая разница между потреблением квартир на разных фазах выливается в следующую закономерность:

  1. На наиболее нагруженной фазе происходит падение напряжения соразмерно нагрузке.
  2. На оставшихся фазах это напряжение, соответственно, возрастает.

Нулевой провод, соединённый с контуром заземления, служит запасным источником электронов как раз на такой случай. Он помогает устранить асимметрию нагрузок и избежать появления перенапряжений на смежных ветках трёхфазной цепи.

Отличие заземления от зануления

Если во время работы отдельно взятой пары фаз нагрузка на них не будет одинаковой, в точке схождения непременно возникнет положительный электрический потенциал. То есть, если при обрыве заземляющего контура человек возьмётся за корпус подъездного щитка, его ударит током. Сила такого удара будет зависеть от степени асимметрии нагрузок.

Большинство электрических машин сконструированы таким образом, чтобы нагрузки распределялись по всем трём фазам равномерно. Ведь иначе одни проводники будут нагреваться и изнашиваться быстрее других. Поэтому точку соединения фаз в некоторых устройствах выводят в отдельный четвёртый контакт, к которому подсоединяется нулевой проводник.

И вот здесь вопрос: где взять этот самый нулевой проводник? Если вы обратите внимание на столбы высоковольтных ЛЭП, на них присутствует только три провода, то есть три фазы. И для транспортировки электроэнергии этого вполне достаточно. Ведь все трансформаторы на понижающих подстанциях имеют симметричную нагрузку на обмотках и заземляются каждый независимо от других.

Типы систем заземления

Вы замечали, что нулевой провод в трёхфазном кабеле имеет меньшее сечение, чем остальные? Это вполне объяснимо, ведь на него ложится не вся нагрузка, а только разница токов между фазами.

Хотя бы один контур заземления в сети должен быть, и обычно он находится рядом с источником тока: трансформатор на подстанции. Здесь система требует обязательного зануления, но при этом нулевой проводник перестаёт быть защитным: что бывает, если в ТП «отгорел ноль», знакомо многим.

По этой причине заземляющих контуров по всей протяжённости ЛЭП может быть несколько, и обычно так оно и есть.

Конечно, повторное зануление, в отличие от заземления, вовсе не обязательно, но зачастую крайне полезно. По тому, в каком месте выполняется общее и повторные зануления трехфазной сети, различают несколько типов систем.

В чем разница между заземлением и занулением

Заземление и зануление: разбираемся в чем разница

При монтаже электросетей в помещениях разного назначения обязательно должна быть предусмотрена защита, предотвращающая возможное поражение человека током. И для этого используется заземление и зануление. Причем далеко не все знают, в чем их разница. Ведь обе они обеспечивают безопасность использования электрических приборов.

По сути, эти два понятия во многом схожи, из-за чего их часто путают, но выполняют они свои функции по-разному. Поэтому постараемся разобраться, что в них общего и чем отличаются.

Заземление

Начнем с разбора каждой системы по отдельности.

Так, заземление – это преднамеренное соединение электрической сети, прибора или оборудования со специальной конструкцией, закопанной в землю посредством нулевого проводника.

По сути, это единая система, соединяющая между собой токопроводящие элементы приборов и оборудования (к примеру, их корпусы), подсоединенные к ним провода, и штыри, закопанные в землю (контур).

Благодаря высокому сопротивлению контура при касании фазного провода на корпус в случае пробоя, большая часть напряжения уходит в землю, и хоть потенциал все же будет оставаться на корпусе, но его значение будет значительно сниженным и неопасным для человека.

Международный стандарт, разработанный МЭК, включает в себя несколько систем заземления, различия между которыми сводится к разным видам заземления источника питания (генератора или трансформаторной подстанции), и заземления открытых участков сети, приборов.

В стандарт входит три системы – TN, TT и IT.

Первая буква индекса указывает на тип заземления источника (T – «земля), получается, что в первых двух системах трансформаторная подстанция подключается к заземляющему контуру.

Что касается третьей (IT), то у нее источник питания заизолирован, либо же подключен к прибору, обеспечивающему высокое сопротивление (I – изоляция).

Вторая буква индекса указывает на тип заземления открытых участков сети. В системе TN (N — нейтраль) эти участки соединены с нейтральным проводником источника, подключенного к заземляющему контуру (глухое заземление нейтрали).

Для соединения оборудования и приборов используются рабочий (N) и защитный (PE) нулевые проводники.

Что касается двух других систем – TT и IT, то второй буквенный индекс указывает на то, что открытые участки сети, оборудование и приборы заземляются своим отдельным контуром.

В свою очередь система TN делится на подсистемы, их три – TN-C, TN-S, TN-C-S.

Различия между ними сводятся к использованию разных защитных проводников, которыми потребители соединяются с нейтралью источника.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ:  Все про электрические обогревательные котлы

В подсистеме TN-C используется объединенный проводник (PEN), совмещающий в себе и рабочий, и защитный «нуль». Эта подсистема является уже устаревшей, поэтому при укладке новых электросетей она не используется.

Подсистема TN-S отличается тем, что у нее рабочий и защитный «нули» — это разные проводники. То есть, к нейтрали подключается N-проводник, а к заземляющему контуру – PE-проводник, хоть они совмещены на источнике питания.

Третья подсистема – TN-C-S является промежуточным звеном между первыми двумя подсистемами. У нее от нейтрали отходит PEN-проводник, то есть нулевые проводники объединены, но на определенном участке сети они разделяются и к потребителям подходит отдельно рабочий и защитный «нули». После разделения защитный «нуль» дополнительно заземляется.

Более подробно о системах заземления, их достоинствах и недостатках можно почитать здесь https://elektrikexpert.ru/sistemy-zazemlenij.html.

Требования, выдвигаемые заземлению достаточно серьезные. Ведь оно должно обеспечить отвод опасного напряжения с прибора или оборудования в случае пробоя.

Заземление в обязательном порядке делается для сетей, в которых напряжение выше 42 В переменного тока или 110 В – постоянного тока.

Поэтому при проектировании должны правильно подбираться части сети и оборудования, которые подлежат обязательному заземлению, осуществляться контроль за тем, чтобы заземляющая цепь нигде не прерывалась.

Серьезно подходят и к выбору проводников, их сечение должно обеспечивать соответствующую пропускную способность.

Все требования, которые выдвигаются системам заземления прописаны в ПУЭ (Правила устройства электроустановок).

Здесь можно подробнее узнать, как сделать заземление в частном доме.

Зануление

А теперь по занулению. В определении этого термина указывается, что зануление – преднамеренное соединение токопроводящих, но не находящихся под напряжением, элементов приборов и оборудования с глухозаземленной нейтралью (трехфазные трансформаторы), выводом источника тока (однофазный трансформатор), средней точкой источника, подающего постоянный ток.

То есть, корпус любого прибора, подключенного к сети, должен быть дополнительно соединен с нейтралью источника питания.

Для систем TT и IT зануление не применяется, поскольку для заземления потребителей используется отдельный контур.

Для создания зануления используется нулевой защитный проводник (PE), который соединяется с нейтралью источника.

Но в ПУЭ сразу же дается пояснение, что в качестве защитного проводника может использоваться и рабочий (N), что подразумевает, что для создания зануления может использоваться и PEN-проводник.

В чем их отличие?

Получается, что зануление, по сути, это то же заземление, сделанное по системе ТN, но если рассматривать более подробно, то разница между ними есть.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ:  Наведенное напряжение и меры защиты от него

Первое, это то, что при заземлении совмещенный нулевой PEN-проводник (системы TN-C и TN-C-S) и PE-проводник (система TN-S) выступают в качестве посредника между приборами и заземляющим контуром трансформатора.

То есть, имеется источник питания, возле которого закопан контур и вместе они соединены.

Проводка от источника идет на потребитель (помещение), где она разветвляется, чтобы обеспечить запитку всех электроприборов и оборудования.

Чтобы заземлить эти приборы (обеспечить защиту), используется та же проводка, а именно нулевые проводники, и контур трансформатора.

А вот при занулении выполняется соединение не с контуром, а непосредственно с нейтральным проводником трансформатора.

А поскольку в обоих случаях используется один проводник — нулевой (в совмещенном – PEN-проводник, в разделенном – РЕ-проводник), то в конструктивном плане заземление и зануление – одно и то же.

Второе, каждый из них работает по-разному, хоть и конструкция – одинакова.

В случае с заземлением, при появлении опасного потенциала на незакрытых участках сети, он будет отводиться в землю посредством заземляющего контура, обладающего высоким сопротивлением.

Зануление же работает с точностью до наоборот. При соприкосновении фазы с корпусом, подключенным к нулевому проводнику, происходит резкое возрастание силы тока в следствие малого сопротивления, то есть происходит короткое замыкание, в результате которого срабатывают автоматические выключатели, устройства защитного отключения, либо же плавятся предохранители.

Вот и получается, что заземление и зануление в техническом плане – одно и то же, но обеспечивают они защиту по-разному.

В целом же, обе они направлены на обеспечение максимальной защиты человека от возможного поражения электрическим током при пробое фазы на нуль, и дополняют друг друга.

Особенности создания заземления и зануления

Теперь о том, как все выглядит на деле. При создании подсистемы TN-C-S совмещенный нулевой проводник (PEN) тянется от трансформатора к помещению.

В вводном распределительном устройстве (ВРУ) происходит разделение его на N и PE-проводники. На конечный потребитель при этом доходит три провода – фаза, рабочий и защитный нули.

ЧИТАЙТЕ ПО ТЕМЕ: Как заземлить стиральную машину.

При подключении прибора получается, что посредством PE-проводника он соединяется с PEN-проводником, который является и соединителем с заземляющим контуром, и глухозаземленной нейтралью.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ:  Алюминиевая проводка, чем она опасна?

Примерно то же происходит и в подсистеме TN-S с той лишь разницей, что заземление и зануление осуществляется разделенными нулевыми проводниками.

То есть в этих двух подсистемах создавая заземление, автоматически выполняется и зануление.

А вот в системе TN-C этого не происходит. Дело в том, что в ней используется PEN-проводник, который не расщепляется на вводе.

Получается, что к конечному потребителю доходит только два провода – фаза и рабочий ноль, а защитного РЕ-проводника – нет, по сути, конечный потребитель не заземлен.

Поэтому и создается зануление – соединение корпусов потребителей с нулевым рабочим проводником.

Если в вышеуказанных подсистемах создавая заземление сразу же появляется и зануление, то в этой его приходится создавать отдельно.

В данном случае зануление является альтернативой заземлению, чтобы обеспечить хоть какую-то защиту.

Поэтому TN-C считается устаревшей, поскольку она не обеспечивает должную безопасность.

Часто возникает вопрос – зачем вообще нужно зануление, ведь заземления считается более безопасной системой.

Моделируем ситуацию: произошел пробой фазы на корпус. Заземление обеспечило отвод большей части напряжения в землю, но часть его все же осталась на корпусе, при этом произойдет повышение значения тока, хоть и незначительно.

Это не опасно для человека, но может привести к неприятным последствиям. Поскольку из-за отсутствия зануления не произойдет сильного скачка тока, то защитные средства просто не сработают, и поврежденный участок не отключиться.

В результате возможно повреждение оборудования или участка электросети, возникновение пожара.

Получается, что зануление и заземление дополняют друг друга, первый делает отключение поврежденного участка цепи, а второй нейтрализует негативные последствия возникшего КЗ в сети, обеспечивая максимально возможную защиту от поражения электрически током.

Часто указывается, что в системах TN-S и TN-C-S зануление не делается. И это так, но только частично. Ведь согласно изложенному, создавая заземление, делаем сразу и зануление. И только у TN-C зануление – отдельный вид работ.

Отсюда можно сразу и судить, где используется зануление, а где нет. Присутствует оно везде, где используется система TN. Но если в старых постройках его приходилось создавать отдельно, то в новых зданиях оно делается в процессе монтажа заземления.

Читайте по теме — способы защиты электроприборов от поломки.

Источник: https://ElektrikExpert.ru/zazemlenie-i-zanulenie.html

Заземление и зануление: в чем разница, защитное заземление

Заземление и зануление: разбираемся в чем разница

Любая электроустановка должна быть заземлена. Это требование Правил устройства электроустановок (ПУЭ) одинаково распространяется на электроприборы с металлическим и пластиковым корпусом, устройства подключения и коммутации: распределительные и вводные щитки, розетки, выключатели.

Для чего необходимо заземление

Если энергоснабжение в помещении организовано в соответствии с ПУЭ, на входе, в распределительном щитке установлены защитные автоматы.

Эти выключатели срабатывают при превышении установленной силы тока: нагревается биметаллическая пластина, происходит ее деформация, и контакты автомата механически размыкаются.

Важно! Именно для этого, автоматы устанавливаются в разрыв фазного проводника. Нулевая шина может быть подключена напрямую.

Происходит разрыв цепи, находящейся под напряжением, электроустановка (или вся цепь) обесточивается, обеспечивая безопасность. Как это работает на практике, и что такое заземление в данной цепочке?

Заземление, это электрический контакт между линией, специально выделенной в электросети, и реальной (физической) землей. То есть шина заземления имеет электрический контакт с грунтом. Одновременно, любая установка, вырабатывающая или распределяющая электрический ток, соединена нулевым проводом с той же землей.

Мы с вами рассматриваем однофазные сети, в которых для питания используются две линии: ноль и фаза. Трехфазные системы в быту применяются редко, поэтому знание этих систем необходимо лишь профессионалам.

Даже если к вам в дом заведено три фазы (такое встречается в частном секторе), для конечного потребления все равно используется два провода: ноль и фаза.

Допустим, у вашей электроустановки (холодильник, бойлер, стиральная машина), особенно с металлическим корпусом, произошла утечка фазы.

То есть, провод под напряжением касается корпуса (отсоединился контакт, нарушена изоляция, протекла вода). Прикоснувшись к электроприбору, вы будете поражены электрическим током.

Кроме того, сопротивление в точке касания мизерное, вследствие чего произойдет мгновенный нагрев провода, и возгорание электроприбора.

Если ваш бойлер заземлен, электрический ток потечет по пути наименьшего сопротивления, то есть по контуру: фаза — «земля» — нулевая шина. Сила тока спонтанно возрастет, и сработает аварийное отключение в автомате защиты. Никто не пострадает, материальный ущерб не будет нанесен.

Если вы имеете поверхностные знания устройства электроустановок, возникает вопрос: а зачем нужно заземление, если то же самое произойдет между фазным и нулевым проводом? И собственно, чем отличается заземление от зануления?

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата.

Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор.

По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной.

Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию.

При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена.

Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе.

Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Как отличить рабочий ноль и защитное заземление

Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).

Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.

Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.

Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.

Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.

Что произойдет при разнесенном рабочем ноле и защитном заземлении?

При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети.

Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли».

Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.

Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.

Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.

А как быть, если в вашем доме вообще не предусмотрено защитное заземление

Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.

Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже — с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме — техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.

Как вариант — организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.

Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:

  1. Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
  2. Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.

При любом способе, вы защитите и свои электроприборы, и главное — свое здоровье.

Важно! Как нельзя организовывать защитное заземление

То, что «землю» нельзя брать из рабочего ноля, понятно из нашего материала. Есть любители заземлиться на трубы водоснабжения или отопления. Теоретически – стальная труба имеет связь с грунтом. На практике, по стояку могут быть вставки из полипропиленовых труб, и никакого контакта с «реальной землей» нет.

Кроме того, что вы не получаете надежного заземления, ставятся под удар соседи, которые могут получить удар током, просто взявшись за батарею отопления.

по теме

Источник: https://ProFazu.ru/provodka/bezopasnost-provodka/zazemlenie-i-zanulenie-v-chem-raznitsa.html

Заземление и зануление: в чем разница

Заземление и зануление: разбираемся в чем разница

Для безопасной работы на различных электоустановках и проводниках используется соединение открытых металлических отводов с землей и подключение сети к нулевому кабелю. Но немногие начинающие мастера точно знают, чем отличается заземление и зануление электроустановок и электрооборудования.

Определение заземления

Заземление – это умышленное подключение открытых частей электрического оборудования, которые находятся под напряжением, к специальному заземляющему отводу, шине или другому защитному оборудованию.

Это может быть арматура в земле, часть электроустановки и другие приспособления. Такой подход, согласно ПУЭ, является обязательной мерой преднамеренной защиты как жилого, так и нежилого фонда. Это же гласят правила и требования ГОСТ 12.1.

030-81 ССБТ (электробезопасность и система стандартов безопасности труда).

Фото — схема

Практически в каждом современном доме установлена схема заземления TN-C-S или TN-S.

Но в зданиях старой постройки заземление зачастую вообще отсутствует, поэтому владельцам квартиры в таких постройках приходится своими силами организовывать землю. Такая система называется TN-C.

Выполняется при помощи подключения отвода к заземляющему контуру, который может располагаться непосредственно в земле у здания или возле трансформаторной будки.

Рисунок TN-C

Теоретически, такую модернизацию проводки может организовать специальная монтажная компания, но практикуется это редко. Чаще к щитку на этаже (в многоквартирном доме) подводится земля, и уже к ней подключаются остальные провода.

  1. Если фаза попадает на открытый металлический отвод любого электрического устройства, то в нем появляется напряжение. Это же случается, если, к примеру, нарушена изоляция кабеля. Человеческое тело – отличный проводник тока, если Вы дотронетесь к такому отводу, то получите сильный удар током. Заземление поможет избежать это;
  2. Блуждающие токи уходят в заземляющий проводник, этим гарантируется охрана жизни;
  3. В особенности опасно напряжение, которое попадает на радиаторы отопления. В таком случае, все батареи в доме становятся проводниками тока. Но если установлена земля, то все напряжение уйдет по проводнику.

Фото — вариант земли

Если нет возможности провести полноценный заземляющий контур, тогда используются другие способы. К примеру, сейчас очень распространено подключение переносных заземляющих штырей (портативные шины). Их действие никак не отличается от стандартного стационарного отвода, но при этом они гораздо практичнее по своему функционалу.

Фото — переносная шина

Назначение зануления

Иногда зануление и заземление путают друг с другом, так в чем разница между ними? Зануление применяется по ПУЭ только для промышленных установок и не является гарантом безопасности. Если фаза попадает на открытую часть устройства, то ток не уходит.

После этого происходит сопряжение двух фаз, и, как следствие, короткое замыкание. Нулевой проводник необходим для быстрого реагирования дифференциального защитного автомата на КЗ, но не для защиты человека от поражения током.

Поэтому его принято использовать только на производстве, где требуется быстрое отключение питания в случае аварийной ситуации.

Фото — схема зануления

Нужно ли делать зануление в частном доме или квартиры? Нет, это необязательно, и даже чревато различными негативными последствиями.

Скажем, если нулевой провод сгорит, то большее количество электрических устройств, к которым он был подключен, сломается из-за чрезвычайно высокого скачка напряжения.

Стоит помнить, что Ваша безопасность не пострадает, если вместе с занулением обустроить также заземление, установить УЗО и защитный выключатель.

Фото — принцип работы зануления

Как установить зануление, чтобы устройство, подключенное к нему, не сгорело:

  1. Нужно использовать трехжильный провод с изоляцией. Одна жила отведена для фазы, вторая для нуля, третья для заземления;
  2. Земля подключается в самом конце электромонтажных работ на корпус безопасного проводника к заземляющему контуру и т. д. Наиболее практичен специальный заземляющий отвод у щита;
  3. В целях безопасности обязательно устанавливаются различные выключатели питания и прочие защитные установки.

: в чем разница зануления и заземления

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие.

Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок.

Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

Фото — отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками.

Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

Источник: https://www.asutpp.ru/zazemlenie-i-zanulenie.html

Чем отличается зануление от защитного заземления?

Заземление и зануление: разбираемся в чем разница
Наверняка каждый электрик-новичок слышал о таком способе защиты от поражения током, как заземлении электроприборов. Монтаж трехпроводной электросети является обязательным условием при строительстве современного дома.

Но что делать, если Вы живете в старой квартире, в которой при строительстве еще не применялась такая система защиты? В этом случае нужно сделать так называемое зануление электропроводки.

О том, что собой представляют обе системы и в чем разница зануления и заземления, читайте далее!

Основные отличия

Как первая, так и вторая система защиты выполняет одну и ту же функцию – защита человека от поражения электричеством при прикосновении к оголенному проводу либо электроприбору, на котором происходит утечка тока.

Разница лишь в том, что защитное зануление провоцирует моментальное отключение электроэнергии при опасном контакте человека и провода, а заземление мгновенно отводит опасное напряжение на землю.

Так же оно вызывает снижение напряжения занулённых металлических нетоковедущих частей, оказавшихся под напряжением, относительно земли. Это и есть их общее отличие друг от друга, если говорить в двух словах.

Если рассматривать вопрос более подробно, то нужно остановиться на том, какой принцип действия у каждого варианта защиты, на основании чего сразу же будет видна разница альтернативных вариантов.

Заземление работает следующим образом: к корпусу опасных электроприборов и бытовой техники подключается заземляющий провод, который идет на заземляющую шину в распределительном щитке.

Оттуда общий заземляющий проводник выходит к главному заземляющему контуру – металлической конструкции, вкопанной в землю рядом с домом (как показано на фото). Если произойдет пробой тока на корпус прибора либо контакт с оголенной токоведущей жилой, опасность минует человека.

Что касается зануления, оно собой представляет соединение корпуса электроприбора с нейтральным проводом сети – нулем. В результате образуется замкнутый контур, как показано на схеме ниже. При возникновении опасной ситуации произойдет короткое замыкание и автоматические выключатели на вводном щитке моментально отключат электроэнергию.

Наглядно увидеть разницу между занулением и заземлением Вы можете на данной схеме:

Надеемся, теперь Вам стало понятно, чем отличаются обе защитные системы и что не менее важно – как они работают. Рекомендуем также просмотреть разницу между ними на наглядном видео примере:

Отличие альтернативных вариантов

Что лучше?

Чтобы Вы полностью усвоили материал, для начала предоставим отличия в использовании каждой системы, на основании чего и сделаем собственный вывод.

  • Заземление дома можно запросто сделать своими руками, имея под рукой сварочный аппарат и немного металла. В то же время для создания зануления требуются определенные знания, связанные с расчетами и выбором оптимальной точки подключения провода к нейтрали.
  • Проводник, обеспечивающий указанные соединения зануляемых частей с глухозаземлённой нейтралью источника называется нулевым защитным проводником.
  • Нулевой защитный проводник отличается от нулевого рабочего проводника, который также соединён с глухозаземлённой нейтральной точкой источника. Он предназначается для электроснабжения источника.
  • Если произойдет обрыв нулевого провода в распределительном щитке, система зануления не будет работать, и Вы можете стать жертвой поражения электрическим током. В этом плане с системой защитного заземления проще, т.к. в отличие от нуля провод PE не отгорает и практически не отваливается, если хотя бы раз в год подтягивать клемму. Хотя насчет этого можно сказать, что контур «земли» из-за того, что находится на улице, также может со временем повредиться, особенно в местах сварки электродов. Опять-таки, если Вы делаете ежегодную ревизию, проблем не будет.

Исходя из этого, можно сделать такой вывод – правильное заземление в частном доме не сложно сделать своими руками и к тому же такая система более долговечная, а значит и безопасная.

Что касается зануления, для его создания нужен вызов мастера и в то же время более частый осмотр целостности нулевого провода, что является огромным минусом при сравнении отличий. Такой вариант не рекомендуется использовать, лучше подключить УЗО для защиты.

Надеемся, что теперь Вы поняли, в чем разница зануления и заземления, как работают обе системы и какая более эффективная для дома и квартиры.

Отличительные признаки — часть 1Отличительные признаки — часть 2 Отличие альтернативных вариантовОтличительные признаки — часть 1Отличительные признаки — часть 2

Источник: https://samelectrik.ru/chem-otlichaetsya-zanulenie-ot-zashhitnogo-zazemleniya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.